Genentech's IT Infrastructure: Evolving to support the Revolution

John "Scooter" Morris, Ph.D. Distinguished Systems Architect Computing Technologies

Scooter Morris, CIT (scooter@gene.com)

Genentech, Inc.

"Genentech is a leading biotechnology company that discovers, develops, manufactures and commercializes biotherapeutics for significant unmet medical needs."

Statistics

- ~5,000 Employees
- ~\$2.2B in Revenue (2001)
- 10 products
 - Protropin[®], Nutropin[®], NutropinAQ[®], NutropinDepot[®], Cathflo[™] Activase[®], Activase[®], TNKase[™], Pulmozyme[®], Herceptin[®], Rituxan[®]
- 1 product awaiting FDA approval
 - Xolair™
- Three major sites
 - South San Francisco, California
 - Vacaville, California
 - Porriño, Spain
 - Several U.S. Sales offices

Genentech, Inc.

Founded in 1976

- Herb Boyer UCSF Professor
- Bob Swanson Entrepreneur, Venture Capitalist

Focus areas:

- Oncology
 - 7 drugs or new indications in pipeline
 - 4 in phase III
- Immunology
 - 5 drugs or new indications in pipeline
 - 2 in phase III, 1 awaiting approval
- Opportunistic
 - 3 drugs or new indications in pipeline
 - 1 in phase III

Clinical Development of Drugs

Discovery	Development	Marketing and Line Expansion
Idea for new chemical	Compound elevated to project status	Post marketing studies
Synthesis and testing	IND plan established and initiated	New clinical indications pursued
Chemical lead found	IND filed	New dosage forms and formulations developed
Additional compounds are made	Clinical studies initiated Phases NDA prepared	Safety surveillance
Candidate compound chosen and additional	and submitted	
tests run	NDA approved	
	Drug launched	

Outline

Current Infrastructure • A bunch of details which I will skip Research Computing Revolution vs. Evolution Evolution of Computing for Research • Evolutionary tree Future Directions

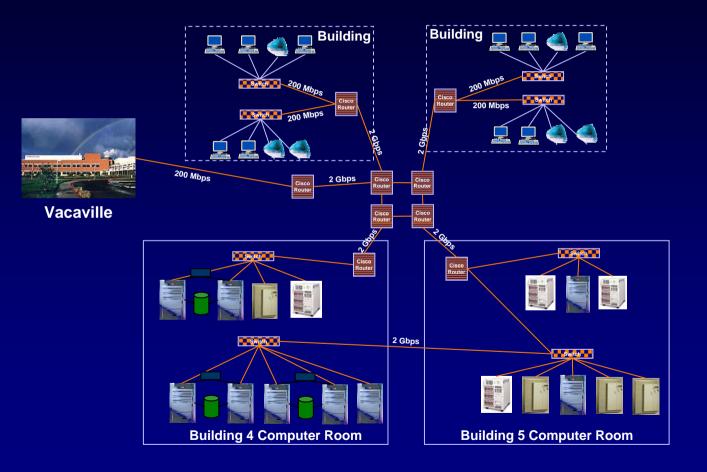
Scooter Morris, CIT (scooter@gene.com)

Current IT Infrastructure

Highly heterogeneous

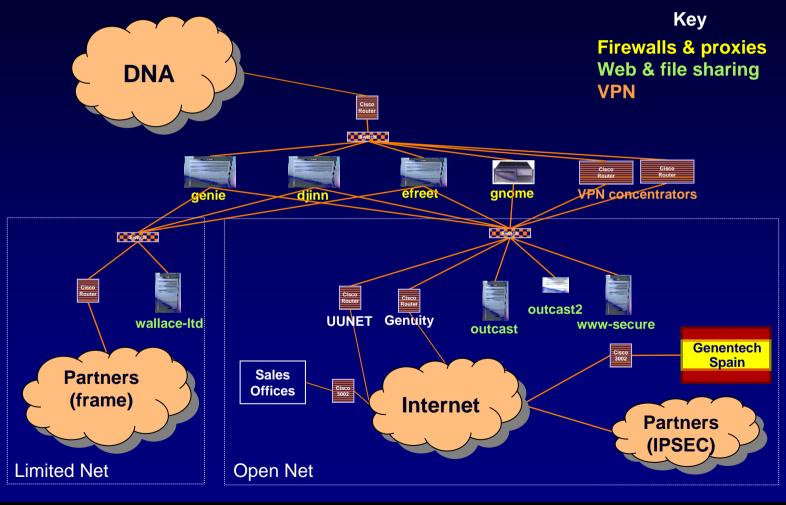
- Servers: SGI, HP Alpha, HP PA-RISC, HP Intel, Sun
- Desktops: Mac, PC, some SGI

Primarily IP-based network


- AppleTalk also supported
- Routers and switches: Cisco

Security based on M&M principle

- Hard outer shell, soft inside
- Some "softness" appearing to support collaboration
- Important to maintain open environment


Current IT Infrastructure

Scooter Morris, CIT (scooter@gene.com)

Current IT Infrastructure

Scooter Morris, CIT (scooter@gene.com) Genentech

This starts the part I'm going to leave out....

Details - Network

Backbone: Switched Gigabit Ethernet Vacaville link: 200 Mbps SONET Ring **Desktop: Switched 10/100 Ethernet Routers: CISCO Addressing: DHCP preferred** Naming: DNS (Bind 9.2.1), WINS, Active Directory, LDAP Firewall: SOCKS5 (Aventail) Monitoring: Big Brother, HP Open View **VPN: Cisco 3000, IPSEC**

Details - Desktop

Compaq (now HP)

• Migrating to Windows 2000

Apple

• Migrating to Mac OS X

Primary Applications

- Microsoft Office 2000/2001
- Netscape Communicator (Browser, Mail)
 - Migrating to Mozilla/Netscape 7
- Steltor CorporateTime
- Norton Antivirus
- FileMaker Pro

Details - Server

HP Tru64 Unix

- Web, E-Mail (IMAP), Bioinformatics, Infrastructure (DNS, Firewall, DHCP, backup/restore, LDAP), General computing, Oracle
 - 5.1A (TruCluster Server 5.1A)

HP/UX

- Manufacturing, Commercial Computing (Lawson, PeopleSoft)
- 10.20, 11.0

Solaris

• Medical Affairs, Infrastructure (Calendar, Remedy, Web Proxy), Research

SGI

Molecular Modeling, Computational Chemistry

Linux

• Computational Chemistry (pilot)

NT

Workgroup Computing, Specific Applications

Details - Database

Oracle 8.1.7

• Exploring Oracle 9iRAC

n-tier approach

- Web Browser for presentation
- Web server for static pages
- Application servers for business logic
- Database server for data store

Details - Web

Server: Netscape Enterprise Server 4.6

Migrating to Apache

Programming: Perl/CGI, JSP, Javascript

Application Servers:

WebLogic

Distributed Computing:

- Direction is towards Enterprise Java Beans
 - WebLogic
 - Tuxedo in use for Manufacturing applications

Development Tools:

• Dreamweaver, JBuilder, Visual Age

Details - Security

Security is based on Kerberos V5

Provides authentication for Unix and Windows 2000

Oracle accounts often use Unix username, but also lots of application-specific accounts

• Exploring use of Kerberos for Oracle accounts

VPN and dial-in access through SecurID tokens

- LDAP is used for Directory services
 - Netscape Directory Server

Serious regulatory restrictions (21CFR Part 11)

Details - Internet/Extranet

Firewall is based on SOCKS5 (RFC1928)

Totally Proxy-based (very secure)

Firewall has three parts:

- Internal
- Internet
- Limited net

Internet link is redundant

- 42 Mbps link with Genuity
- T1 (1.54 Mbps) link with UUNET
 - Migrating to a redundant 42 Mbps link
- Uses OSPF for dynamic fail-over
- Using IPSEC tunnels over the Internet for secure communications with partners

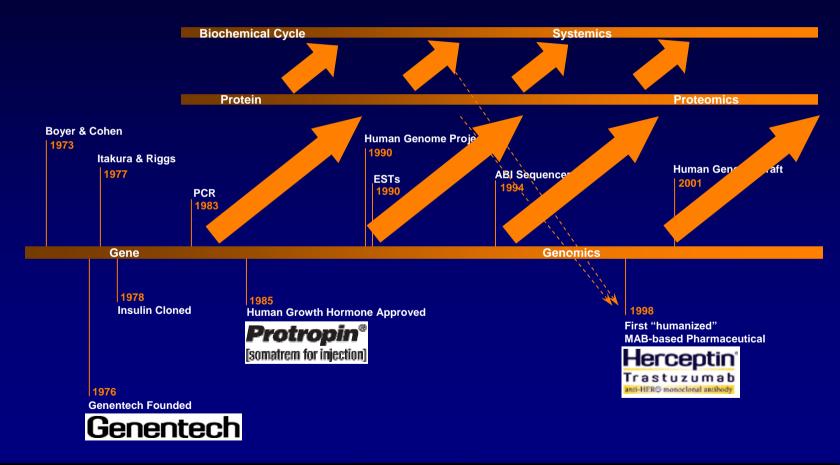
Cisco 3000 VPN concentrators

• Employee access only

Reverse-web Proxy

Allows external partners access to selected internal web sites

Scooter Morris, CIT (scooter@gene.com)


Any questions on the details?

• I didn't think so....

The Revolution (a parochial view)

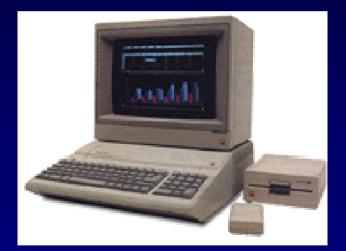
Scooter Morris, CIT (scooter@gene.com)

The Revolution

More than changes in scale

Fundamental changes in *scope* and complexity

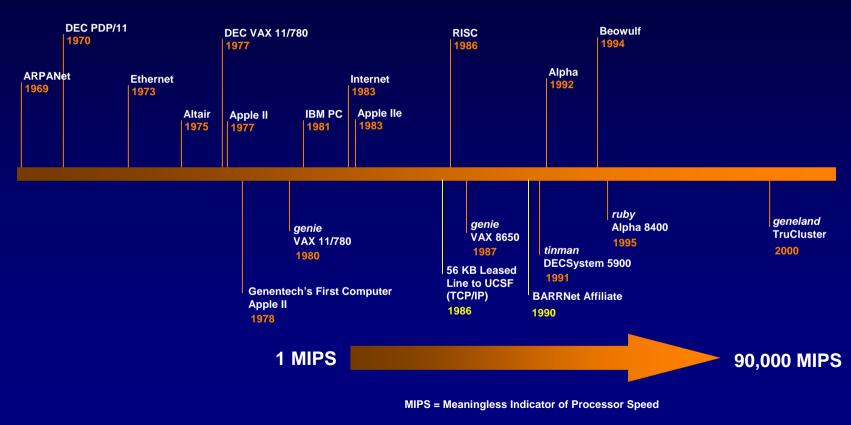
• Gene→Genome→Proteome→Systems


Dependent on computation

- Dramatic increases:
 - Performance
 - Storage capabilities
 - Communication capabilities

Evolution of computing at DNA

In the beginning was the.....



Apple II

Computing "Revolution" (a parochial view)

Scooter Morris, CIT (scooter@gene.com)

Computing "Revolution"

Changes in scale

- System performance
 - 1 MIPS → 90,000 MIPS (clustered)
- Memory capacity/system
 - 4MB \rightarrow 88GB (~4 orders of magnitude)
- Global connectivity
 - 9.6 Kbps → 42 Mbps

Changes in complexity

- Multiprocessing (threaded code)
- Clustering (distributed code)

Strategies for IT Change

Change is required to:

- support changing research needs
- take advantage of changing technology

Strategies

- Revolutionary
 - Rip and replace
 - Takes maximum advantage of changing technology
- Evolutionary
 - Incremental changes
 - Minimizes impact to users
 - Might result in slower adoption of technology
- Genentech has taken an evolutionary approach

Setting - Research

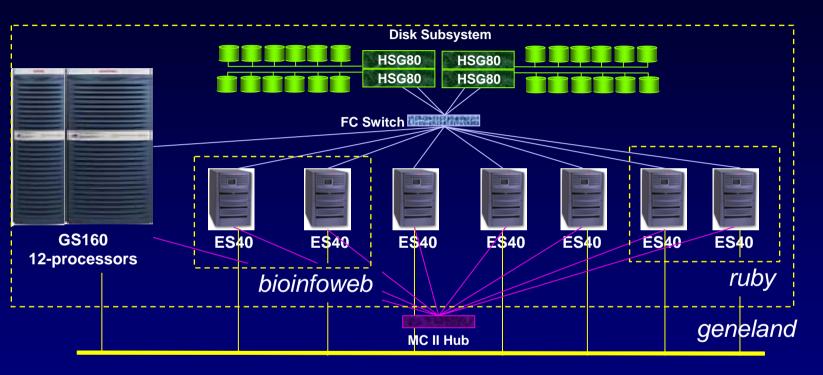
Goal

- Basic research
- Human pharmaceuticals

Organization (roughly)

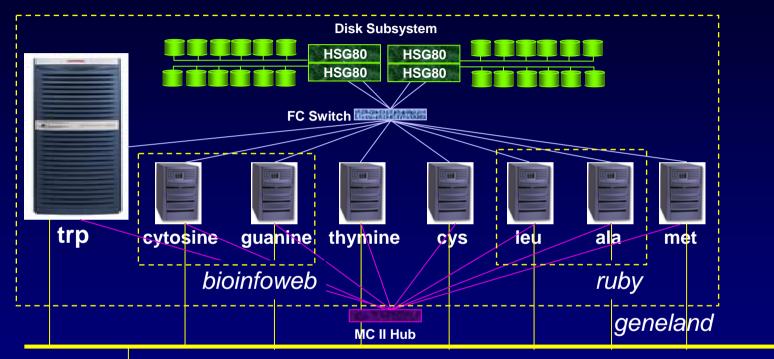
- Discovery
 - e.g. Molecular Oncology, Immunology
- Technology
 - e.g. Bioinformatics, Protein Engineering, Bioorganic Chemistry

Academic culture


- Open, fast-paced environment
- Need to provide tools as much as solutions

Computational needs are high

- Bioinformatics
- Molecular modeling
- Computational Chemistry


Bioinformatics Computing Evolution

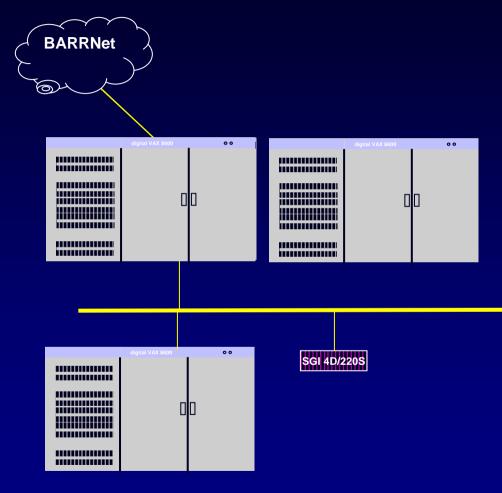
Scooter Morris, CIT (scooter@gene.com)

Bioinformatics Cluster

Scooter Morris, CIT (scooter@gene.com)

Protein Engineering / Bioorganic

Linux Cluster Image: SGI Origin 2000 (16 processors) SGI Origin 2000 (12 processors) Image: SGI Origin 200 (12 processors) Imag



Evolution of computing at DNA

1980: VAX 11/780

- BSD Unix
- UUCP Dialup Connection to UCSF

1984: VAX 11/785

- BSD Unix
- "Corporate" network

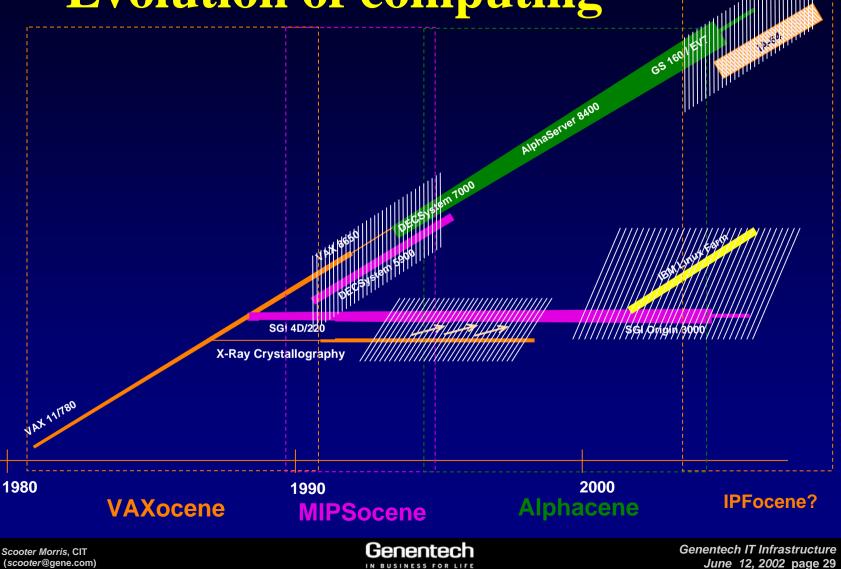
1986: Connection upgrade

• 56Kb Leased line (TCP/IP)

1987: VAX 8600

- BSD Unix
- gene.com registered
- BARRNet affiliate (1990)

1989: VAX 8650


- BSD Unix
- Total of 3 shared systems

1989: SGI Server

- IRIX
- NFS Services
- Molecular modeling

Evolution of computing

Evolution of computing – Punctuated Equilibrium?

We have been in a period of relative stability

Episodes of change are "normal"

- Hardware changes
- OS changes
- Technological changes (Java, J2EE, etc.)
- Vendor changes

Our job:

- Making the change less intrusive
 - Attractiveness of Java
 - Vendor stability
 - Planning
- Avoid revolution

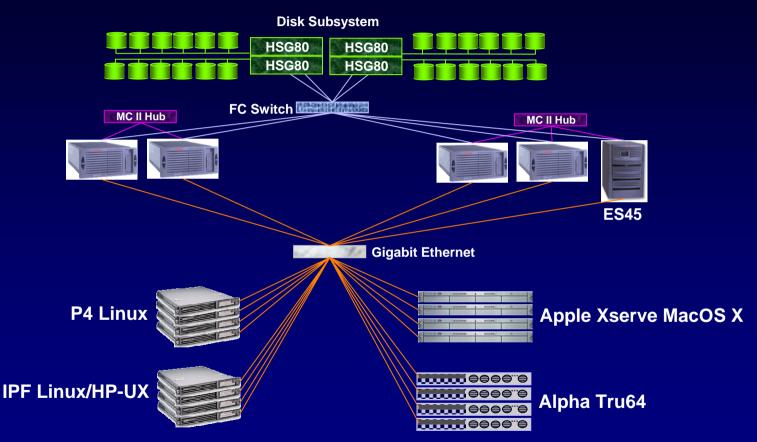
Scooter Morris, CIT (scooter@gene.com)

Linux Pilot

Purchased a 24-node Linux cluster

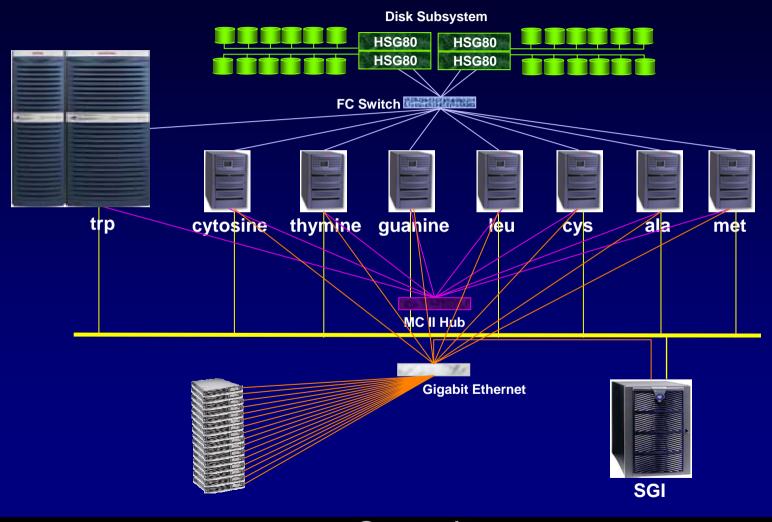
- 2 800MHz PIIIs in each node
- Myrinet
- Computational Chemistry Applications
 - Amber, Gaussian

Results


- Memory bandwidth was a problem
- PIIIs already out-of-date
- Myrinet capabilities not heavily used

Hypothesis

- Could build a cluster with different types of nodes
- Submit jobs to appropriate node depending on computational needs
- May not need expensive cluster interconnect



Heterogeneous Compute Farm

Research Computing Environment – Future?

Scooter Morris, CIT (scooter@gene.com) Genentech

Questions?

Good, I've got some questions:

- How many are Tru64 customers?
- How many are concerned about Itanium transition?
 - What are your concerns?
- How many are concerned about HP/UX transition?
 - What are your concerns?

Thank you!

Acknowledgements: Colin Watanabe Carol Morita Roy Takai Pam Fitch

Scooter Morris, CIT (scooter@gene.com)

